Global network alignment using multiscale spectral signatures

نویسندگان

  • Robert Patro
  • Carl Kingsford
چکیده

MOTIVATION Protein interaction networks provide an important system-level view of biological processes. One of the fundamental problems in biological network analysis is the global alignment of a pair of networks, which puts the proteins of one network into correspondence with the proteins of another network in a manner that conserves their interactions while respecting other evidence of their homology. By providing a mapping between the networks of different species, alignments can be used to inform hypotheses about the functions of unannotated proteins, the existence of unobserved interactions, the evolutionary divergence between the two species and the evolution of complexes and pathways. RESULTS We introduce GHOST, a global pairwise network aligner that uses a novel spectral signature to measure topological similarity between subnetworks. It combines a seed-and-extend global alignment phase with a local search procedure and exceeds state-of-the-art performance on several network alignment tasks. We show that the spectral signature used by GHOST is highly discriminative, whereas the alignments it produces are also robust to experimental noise. When compared with other recent approaches, we find that GHOST is able to recover larger and more biologically significant, shared subnetworks between species. AVAILABILITY An efficient and parallelized implementation of GHOST, released under the Apache 2.0 license, is available at http://cbcb.umd.edu/kingsford_group/ghost CONTACT [email protected].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acoustic Target Classi cation Using Multiscale Methods

This study considers the classiication of acoustic signatures using features extracted at multiple scales from hierarchical models and a wavelet transform. In the model-based approach, multiscale spectral features are extracted with hierarchical autoregressive and moving average (ARMA) models. The model-ing approach is also used for monitoring vehicular activities from an AR spectrogram. The AR...

متن کامل

IsoRankN: spectral methods for global alignment of multiple protein networks

MOTIVATION With the increasing availability of large protein-protein interaction networks, the question of protein network alignment is becoming central to systems biology. Network alignment is further delineated into two sub-problems: local alignment, to find small conserved motifs across networks, and global alignment, which attempts to find a best mapping between all nodes of the two network...

متن کامل

An Efficient Hierarchical Modulation based Orthogonal Frequency Division Multiplexing Transmission Scheme for Digital Video Broadcasting

Due to the increase of users the efficient usage of spectrum plays an important role in digital terrestrial television networks. In digital video broadcasting, local and global content are transmitted by single frequency network and multifrequency network respectively. Multifrequency network support transmission of global content and it consumes large spectrum. Similarly local content are well ...

متن کامل

Alignment and integration of complex networks by hypergraph-based spectral clustering

Complex networks possess a rich, multiscale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction, or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these proble...

متن کامل

Efficient Regular Expression Signature Generation for Network Traffic Classification

Regular expression signatures are most widely used in network traffic classification for trusted network management. These signatures are generated by the sequence alignment of the traffic payload. The most commonly used sequence alignment algorithm is Longest Common Subsequence (LCS) algorithm which computes the global similarity between two strings but it fails in consecutive character matche...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 28 23  شماره 

صفحات  -

تاریخ انتشار 2012